Wetter in Bad Markstein

Markov-Ketten www.mathematik-verstehen.de Haftendorn 2011

Problem1 Wetter in Bad Markstein Problem 2 Wetter in Hamburg

Definition der Übergangsmatrix **aa**:=
$$\begin{bmatrix} 0.5 & 0.2 & 0.3 \\ 0.2 & 0.7 & 0.1 \\ 0.15 & 0.75 & 0.1 \end{bmatrix}$$

(Aus den Vorlagen geholt. Beim Eintragen TAB verwenden! Doppel a, weil es A nicht gibt.) Bezug dieser Zahlen: Vorlesung 10 Mathe für alle.

www.leuphana.de/matheomnibus Wetter Bad Markstein: (Sonne, Nebel, Regen) Takt 1 Tag

Hein kommt bei Sonne in Bad Markstein an. Was hann er morgen und dann übermorgen für Wetter erwarten? **heutesonne**:= $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

1.1

Wetter in Bad Markstein

Entwicklung des Wetters auf lange Sicht

$$\begin{bmatrix} 0.274649 & 0.57042 & 0.154931 \\ 0.274647 & 0.570423 & 0.154929 \\ 0.274647 & 0.570424 & 0.154929 \end{bmatrix}$$
 gibt eine stabile Wetterverteilung an, denn

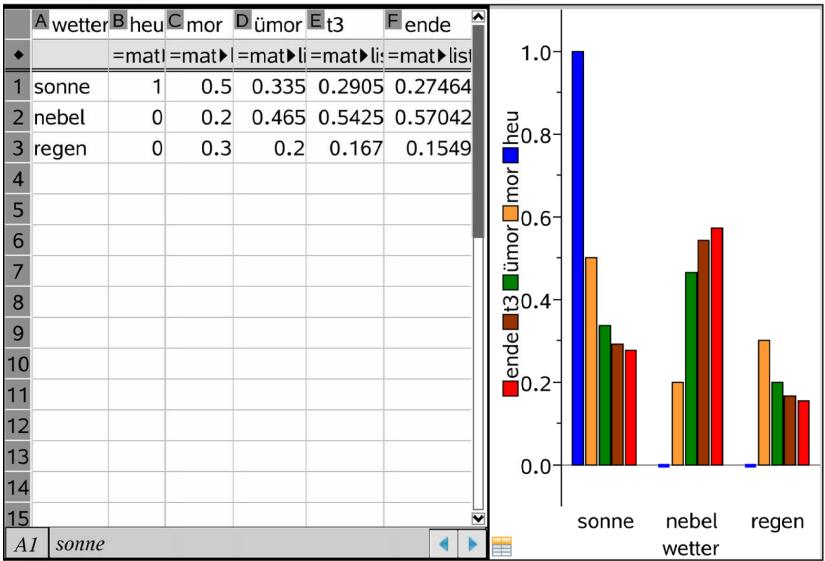
 $\begin{bmatrix} 0.274649 & 0.57042 & 0.154931 \end{bmatrix}$ ·aa · $\begin{bmatrix} 0.274648 & 0.570422 & 0.15493 \end{bmatrix}$

ist schon fast dieselbe Verteilung.

ve:= $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ ·aa 50 · $\begin{bmatrix} 0.274648 & 0.570423 & 0.15493 \end{bmatrix}$ mit hoher Genauigkeit. ve·aa-ve · $\begin{bmatrix} 0. & 0. & 0. \end{bmatrix}$

Also gilt ve=ve·aa · [true true] man sagt auch allgemein: ve ist Eigenvektor von aa zum Eigenwert 1

ve·aa → [0.274648 0.570423 0.15493] oder ve·aa-ve → [0. 0. 0.]


Hilfe:

Für das Histogramm: heu markieren, re Maus Ergebnisdiagramm, es kommt ein Assistent.

1.2

www.mathematik-verstehen.de Wetter in Bad Markstein und Hamburg Prof. Dr. Dörte Haftendorn 2013 Markov-Ketten

Wetter in Bad Markstein

1.3

markov-wetter.tns 3 von: 6

www.mathematik-verstehen.de Wetter in Bad Markstein und Hamburg Prof. Dr. Dörte Haftendorn 2013 Markov-Ketten

Wetter in Hamburg

Definition der Übergangsmatrix $aa:=\begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.7 & 0.1 \\ 0.1 & 0.3 & 0.6 \end{bmatrix}$

(Aus den Vorlagen geholt. Beim Eintragen TAB verwenden! Doppel a, weil es A nicht gibt.) Bezug dieser Zahlen: Vorlesung 10 Mathe für alle.

www.leuphana.de/matheomnibus Wetter Hamburg: (Sonne, Nebel, Regen) Takt 1 Tag

Hein kommt bei grauem Himmel in Hamburg an. Was hann er morgen und dann übermorgen für Wetter erwarten? **heute**:= $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

0.25 0.5 0.25

2.1

Wetter in Hamburg

Entwicklung des Wetters auf lange Sicht

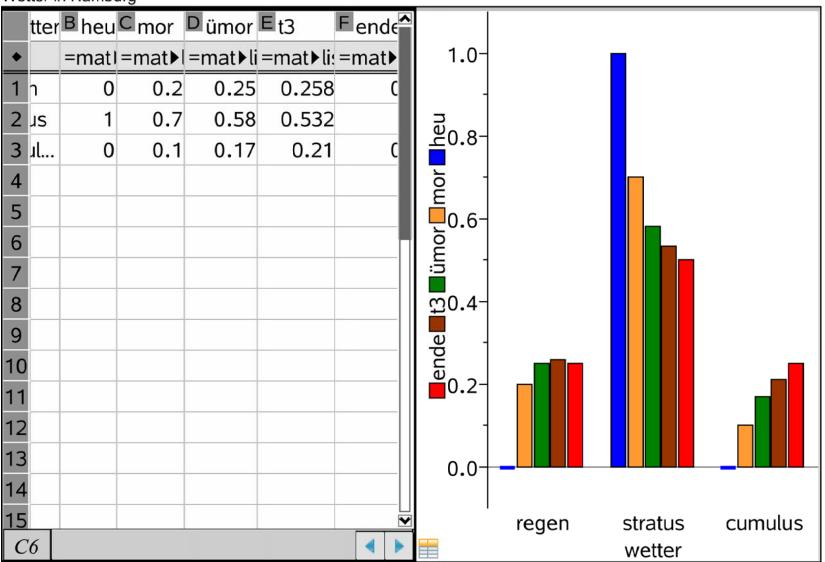
$$aa^{50}$$
 • $\begin{bmatrix} 0.25 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.25 \\ 0.25 & 0.5 & 0.25 \end{bmatrix}$ gibt eine stabile Wetterverteilung an, denn

alle Zeilen sind ve:= $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ ·aa⁵⁰ • $\begin{bmatrix} 0.25 & 0.5 & 0.25 \end{bmatrix}$

Es gilt ve=ve·aa man sagt auch allgemein: ve ist Eigenvektor von aa zum Eigenwert 1

$$\mathbf{ve} \cdot \mathbf{aa} \triangleright \begin{bmatrix} 0.25 & 0.5 & 0.25 \end{bmatrix}$$
 oder $\mathbf{ve} \cdot \mathbf{aa} - \mathbf{ve} \triangleright \begin{bmatrix} 0. & 0. & 0. \end{bmatrix}$

Die erste Spalte von aa ist amtlich, die anderen geschätzt-


Also dann ist das Wetter im Hamburg im Mittel

25% Regen, 50% Stratus (=bedeckt) 25% Cumulus (Schönwetter)

Hilfe:

Für das Histogramm: heu markieren, re Maus Ergebnisdiagramm, es kommt ein Assistent.

Wetter in Hamburg

2.3

markov-wetter.tns 6 von: 6